Tag Archives: metallic foam

It’s a Wire! It’s a Tube! It’s . . . Super-Foam!

Ever wonder where Governor Schwarzenegger got his Terminator skin?

Well, maybe not.  But if you recall, the Terminator robot in the film had a metallic skeleton with biological tissue over it, so that it looked just like a human being…if human beings were all bodybuilders from Austria, that is.  Anyway, tissue engineering is not just something they dreamed up in Hollywood.  It’s for real.  The idea is to duplicate bone and cartilage, for example, to make replacements for real tissue in our bodies when it wears out due to, oh, say, football injuries or skydiving, or maybe just being over 40.

So that’s what Virginia Tech Ph.D. candidate Michael Sano was working on one day when he noticed that sometimes the cellulose fibrils he was making were thinly coated with metal, resulting in tiny ‘nanowires’.  He quickly realized that by altering the solutions in his experiments, he could produce any type of nanowire he wanted to make.  He also learned that under the right conditions he could degrade the cellulose, leaving a ‘nanotube’.  By tweaking yet another parameter he could create a material that is best described as ‘metallic foam’.

From Sano’s engineering perspective, he could see he had solved a long-standing challenge for the field of nanotube construction: how to fuse sub-nano-sized segments together to extend them into something that still had a continuous hollow core and was long enough to be a functional nanotube.

Mike could also see that this was potentially a way to produce nanocircuitry in situ, allowing connections to be formed between points in ‘nanospaces’, if you will.

And the metallic foam?  Well, it is light-weight , strong, and can be produced from just about any metal ion you want.

Of course, none of this has anything to do with the Governator of California, as far as I know.

To read more about the project Mike Sano was working on when he made his discovery, you can go here.

Leave a comment

Filed under biotechnology, Materials