Category Archives: optics

How will new patent law affect tech sector?

The America Invents Act was signed on Sept 16, and it makes sweeping changes to the way patents work in the US.  Widely seen as pro-business and possibly detrimental to small time inventors, the new law will phase in over the next 18 months and change the way the technology field is implemented.

VTIP, the technology transfer office of Virginia Tech, is sponsoring an event to help sort out the facts from the myth.  Guest speakers will describe the effects on inventors and tech startups and answer questions.  The event is called “Making Connections” and will be held in 310 in the ICTAS building on Stanger Street on October 18 from 2-5 pm.  Anyone is welcome to attend, but seating is limited so register with Michael Miller using the information provided in the link.

Advertisements

Leave a comment

Filed under biotechnology, Communications, electronics, Energy, genetics, Materials, medical technology, Networks, optics, propulsion, Robotics, Sensing, software, Wireless

Local Tech Companies Nominated for Awards

It’s almost May, and you know what that means:  The NewVa Corridor Technology Council has announced a list of companies nominated for the various awards handed out at the annual awards banquet.  You can find a link to the NCTC website to register for the awards ceremony here.

Awards are handed out in the categories of Rising Star, Educator, Entrepreneur, Leadership, and Innovation.  Sometimes they hand out another special award for a local technology leader whose contributions don’t fit exactly into any of the single categories.  It’s a fun networking opportunity and a chance to reward the technology leaders who help drive the local economy.  This year it will be at the Hotel Roanoke, in beautiful downtown…er, …..Roanoke.

The list of nominees is provided by the local newspaper here.

Now, a comment about the NCTC name.  I liked it better before, when it was the New Century Technology Council.  Apparently they decided that once the New Century had cut it’s first teeth, it would seem passe’ to keep that reference.  So instead, they decided to use the terribly expensive “NewVA” brand (I don’t know who paid for it, or who came up with it – it wasn’t the NCTC as far as I know, but a regional re-branding.).  NewVA is sort of short for New Virginia, as if Old Virginia would be something distasteful, or old fashioned, maybe.  I’m not going to gripe about it too much, except to note that “NewVA Corridor Technology Council” does not roll off the tongue as smoothly as “New Century Technology Council”.

Leave a comment

Filed under biomimetic, biotechnology, Communications, Energy, fuel, genetics, Materials, medical technology, Networks, optics, propulsion, Robotics, Sensing, software, Wireless

When is technology a bad idea?

OK, I’m fully expecting to receive some flak about this post, but I’m going to write it anyway.

I remember a scene in the movie Jurassic Park where, after hearing the scientific explanation about how the dinosaurs were cloned and brought to life, Dr. Ian Malcolm (played by rakishly nerdy Jeff Goldblum) says something like, “Just because you can do a thing, doesn’t mean you should do it.”

You know, technology is a lot like that.  Just look at nuclear fission.  The same technology that could give us almost unlimited, inexpensive electrical power, can also be turned on us in the form of nuclear weapons.  Perhaps more to the point, it can also give us Three Mile Island and Chernobyl.

I apply that same sort of caution to an otherwise laudable effort by Dr. Dennis Hong and his team to develop technology that would allow blind people to drive a car. You can read more about it here and here.  Dennis’ team is stepping up to the National Federation for the Blind‘s “Blind Driver Challenge“, sponsored by the Jernigan Institute.

I know.   That was my reaction at first, also.  Why in the world would we want blind people driving automobiles?  Sighted people have enough trouble.

So, now that I have that out  of my system, let’s talk about reality.  There is no doubt that Hong’s engineering team will come up with some amazing ways to augment automobile navigation and control.  But let’s face it, who will insure a blind driver?  See, (no pun intended), driving is one of those personal responsibility things.  If you hit somebody, it’s your fault.  Period.  The statistical tables are well understood for the insurance industry, which allows them to set rates based on likelihood of an accident for various population classes who drive.

Oh, and in case you didn’t know, the highest incidence of accidents is not reckless teenage boys with fast cars, as popular 1960s songs might lead you to believe.  Nope, it’s teenage GIRLS.  Not really a surprise, I suppose, is it?

Anyway, just imagine that Hong, or somebody, develops the technology to allow blind people to drive a car on the highway with everybody else.  And suppose some critical part of that technology fails, as technology is wont to do at the most inopportune moments.  And suppose this failure leads to an accident where, unfortunately, one or more people are killed.  Maybe even the blind person.

The lawyers will have a field day.  The blind driver’s family will sue the automaker and the people who developed the blind driving technology for misleading the blind driver into thinking it was safe to drive.  The families of anybody else involved in the accident will sue the blind driver, and probably all the people the blind driver sues as well.  Somebody will sue the regulatory agency that approved this fiasco.  Who knows where it might end?

Which is why I don’t think this technology will ever be used to enable blind people to driver cars on the highway.

BUT, it could have other purposes.  What would a foolproof blind driver system look like?  Well, it would navigate for you, locate obstacles for you, predict paths for you to avoid objects, and pretty much just take over the driving for you.

In fact, if such as system could work, we would all end up in a world where none of us would actually be driving our cars at all.  I mean, if it is that safe, then there would be a massive computer controlled road network with smart cars, no traffic jams, and pretty much no autonomy.

Might as well take a bus or a train….

So, what’s the end of this story?  Well, I think Hong’s work will actually lead to systems that make cars safer and more convenient for sighted drivers, not blind ones.  And while I completely sympathize with blind people and their limited autonomy in life, the usefulness of this technology to them will be limited to in-community, limited use roads such as within a retirement area.  And maybe that is enough.

Be sure to spend a few minutes browsing Hong’s research lab website, the ROMELA lab.  It’s full of very interesting and very, very creepy robotic things, including graduate students.

Hehe, just kidding.  The graduate students, while creepy like all graduate students, are not, in fact, robotic as far as I know.

But with Dennis, you can never be sure….

Leave a comment

Filed under Communications, optics, propulsion, Robotics, Sensing, software

Under my skin

Who among us hasn’t slipped out without our parents knowing and visited our local hopefully hygenic body artist and gotten a little permanent ink decoration in that special spot,  only to change our minds later and realize that either (a) our current significant other, the object of our inky affection, turned out to be a jerk/jerkette, or (b) in some careers, visible tattoos are not considered acceptable business attire?  Don’t you hate it when Mom turns out to be right?

In addition to many actual dermatological conditions requiring attention, a growing number of people are seeking to undo that adolescent indiscretion through laser skin treatments.  With the devices currently available, the laser light is applied to the surface of the skin and then it is up that beam of light to find its own path to the pigmented areas beneath the surface of the skin.  That means it can bounce around in there for a little while before finding the pigmented area, all the while heating up the surrounding tissue needlessly.  Ouch.

Biomedical Engineer Dr. Chris Rylander and his team in the Biotransport and Optics Lab at Virginia Tech have come up with a device that better controls where the laser light travels using optical fibers modeled after a mosquito proboscis – that’s the part the mosquito sticks into you to suck out blood and leave behind an itchy bump (and possibly malaria).

When a mosquito first slips its proboscis into a victim’s skin, it is so small it can’t be felt until the insect starts the deposit/withdrawal process of removing blood.  Chris’ optical fibers rival those of a mosquito, and he is working on a full-scale prototype of his current single fiber prototype.  These fibers can painlessly penetrate the outer layer of the skin and direct laser light more efficiently and quickly to those subdermal target areas.

While the offending spots and blemishes to be treated seem to reside on the surface of the skin,  they arise there from the subdermal layers.  Zap the subdermal cells that are the source of the unwanted pigment effectively and completely, and the source of the spot will be no more.  And that is what Chris’ invention is all about: delivering laser light faster, better, and with less damage and pain to the cells that resupply the spot you see on the skin’s surface.

For more details, you can actually download a pdf report of Chris’ work from the website of the National Insitutes of Health here.

1 Comment

Filed under biotechnology, Materials, medical technology, optics