Under my skin

Who among us hasn’t slipped out without our parents knowing and visited our local hopefully hygenic body artist and gotten a little permanent ink decoration in that special spot,  only to change our minds later and realize that either (a) our current significant other, the object of our inky affection, turned out to be a jerk/jerkette, or (b) in some careers, visible tattoos are not considered acceptable business attire?  Don’t you hate it when Mom turns out to be right?

In addition to many actual dermatological conditions requiring attention, a growing number of people are seeking to undo that adolescent indiscretion through laser skin treatments.  With the devices currently available, the laser light is applied to the surface of the skin and then it is up that beam of light to find its own path to the pigmented areas beneath the surface of the skin.  That means it can bounce around in there for a little while before finding the pigmented area, all the while heating up the surrounding tissue needlessly.  Ouch.

Biomedical Engineer Dr. Chris Rylander and his team in the Biotransport and Optics Lab at Virginia Tech have come up with a device that better controls where the laser light travels using optical fibers modeled after a mosquito proboscis – that’s the part the mosquito sticks into you to suck out blood and leave behind an itchy bump (and possibly malaria).

When a mosquito first slips its proboscis into a victim’s skin, it is so small it can’t be felt until the insect starts the deposit/withdrawal process of removing blood.  Chris’ optical fibers rival those of a mosquito, and he is working on a full-scale prototype of his current single fiber prototype.  These fibers can painlessly penetrate the outer layer of the skin and direct laser light more efficiently and quickly to those subdermal target areas.

While the offending spots and blemishes to be treated seem to reside on the surface of the skin,  they arise there from the subdermal layers.  Zap the subdermal cells that are the source of the unwanted pigment effectively and completely, and the source of the spot will be no more.  And that is what Chris’ invention is all about: delivering laser light faster, better, and with less damage and pain to the cells that resupply the spot you see on the skin’s surface.

For more details, you can actually download a pdf report of Chris’ work from the website of the National Insitutes of Health here.

Advertisements

1 Comment

Filed under biotechnology, Materials, medical technology, optics

One response to “Under my skin

  1. Pingback: Keeping the eggs in the omelette « Hokietech's Blog

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s